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Absfract—A structufe which is important as an example of a
spatially periodic medium for, &icrowave propagation is analyzed
theoretically, yith rigorous consideration of its partial dielectric
composition, symmetry properties; and field configuration relating
to its use for electron-wave interaction in a crossed-field amplifier
(CFA). The analysis k carried out in a quasi-TEM approximation,
leading to determination of a complex potential function withii tie
unit cell and the associated normal-mode parameters: effective di-
electric constant, phase velocity, and characteristic impedance, as
functions of phase per cell and mode symmeti-y. With imposition of
mesnde.rdine boundary conditions, solutions of the characteristic
equation for the dkpersion law of the strncture are computed,
including the influence of the inhomogeneous dielectric-vacmim
construction of microstrip. A&eement with the observed phase and
stopband features of a representative structure is very good. Power
dkkribution and group velocity are calculated, and an interaction
impedance, representing the coupling between tie RF field and an
electron beam for estimation of CFA performance is also calculated.
The method lends itself to detailed computations, including the
effects of structural features of practical slow-wave circuits.

I. INTRODUCTION

T HE PASSAGE of electromagnetic radiation through

spatially periodic media arises in .a variety of physical

situations, including some as widely diverse as X-ray

diffraction by crystals, transmission and reception by

microwave array antennas, optical integrated circuits, and

RF filtering. From consideration of the symmetry prop-

erties of the medium and the logical consequences of these,

it is possible to deduce certain qualitatively distinctive

features, such as the existence of stopbands, properties

of the dispersion function, and angular diffraction lobe

patterns. For most applications, however, the generation

of useful design information and the realistic comparison

of theoretical and experimental results are possible only

if the boundary-value problems involved can be solved

in a substantially rigorous manner. With the aid of sym-

metry principles the problem can be reduced to that of

field analysis in a single unit cell of the periodic medium.

This reduced problem may itself be a rather formidable

task, and the value of the results depends on the recogni-

tion and analysis of the effects of significant structural

parameters. Various simplified versions of the slow-wave

structure for the vacuum-tube crossed-field amplifier

(CFA) have been treated in the microwave literature

[1], [2]. The objeetive of the present analysis is to calcu-

Manuscript received May 2, 1974; revised August 2’7, 1974. This
work was supported by the Department of the Army.

The author is with the Department of Physics, Worcester Poly-
technic Institute, Worcester, Mass. 01609? and Lincoln Laboratory,
Massachusetts Institute of Technology, Lexington, Mass. 02173.

late the dispersion function, iterative and interaction

impedances, and other details of the microstrip meander

line, incorporating the dielectric and conductor configura-

tion in sufficient detail to permit a realistic assessment

of the electrical effects of design variations which might

be introduced in order to fulfill the practical CFA design

constraints.

II. THE QUASI-TEM MODEL

The propagation medium contemplated for the analysis

of the microstrip meander line is an infinite array of

parallel strips on a shielded grounded dielectric substrate,

as illustrated in Fig. 1. As indicated in the figure, the

meander line will be considered to occupy a region of

width A, with conducting links connecting the ends of

adj scent strips alternately at the two sides of that region.

With the electromagnetic fields satisfying boundary

Conditions appropriate to the configuration of conductor

and dielectric, the remainder of the infinite array outside

the region of interest may be discarded (or alternatively,

as with guided-wave structures generally, it may be

regarded as an infinite repetition of the same configuration

of matter and of corresponding fields). The procedure

will be to seek solutions of the wave equation on the

complete infinite array which not only conform to the

arrangement of its boundaries but also reflect its symmetry

properties. The principal value of this approach, as con-

trasted for example with calculations which begin with the

determination of the fields on an individual isolated strip,

is that by this means the overlap and consequent coupling

of fields are rigorously incorporated for neighboring strips

of all orders.

The general form of the normal modes of propagation in

the infinite array is that of waves having constant ampli-

tude and uniform phase variation k per unit length in the

x direction, parallel to the strips. In addition, as in the

case of filters and other periodic networks generally, these

modes are characterized by the parameter p, denoting a

constant phase increment per unit cell (dimension p) in

the z direction, which becomes the resultant direction of

propagation in the meander line. Thus the planes of con-

stant phase make, in general, a slant angle &arctan (kp/@)

with the z axis, and for each value of p there is a degenerate

set of four such waves, corresponding to propagation

directions in each of the four quadrants relative to the

x and z axes. An additional two-fold degeneracy with

respect to the parameter q arises due to our choice of unit

cell embracing two conducting strips; it is a manifestation

of the reflection symmetry of the unit cell.
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Fig. 1. An infinite array of parallel strips, with respect to which
the symmetry-adapted. normal modes of propagation are defined.

It should be noted that the foregoing symmetry prop-

erties are shared by all modes of propagation on the

infinite microstrip array. The present analysis is limited,

however, to the fundamental modes (to be defined later)

which govern the behavior of the slow-wave structure in

the frequency range which is of interest for most ap-

plications.

Determination of the normal modes of propagation is

performed by a Green’s function method in which the

charge and current distribution on the conducting strips

is rigorously determined also, thus yielding a capacitance

per strip, an effective dielectric constant, and a charac-

teristic impedance for each mode.

It then remains to obtain a superposition of the normal

modes so as to fulfill the meander-line boundary condi-

tions, at the connecting links between strips. Solution of

this, problem leads to determination of the relation between

frequency and the phase parameter q, i.e., the dispersion

relation for the microstrip meander line. The wave field

resulting from the superposition of modes may be intui-

tively visualized as a wave which propagates in meandering

fashion, following the meandering conductor configura-

tion. All the other quantities of interest are thereby

determined, including the RF field configuration and

all information required for study of the interaction with

an electron beam.

To begin the analysis, we assume that propagation in

the medium illustrated in Fig. 1 can be characterized by

an effective dielectric constant K,ff, which depends on the

mode. of propagation considered. We assume that a wave

function @(z,y,z) representing a mode in this medium

satisfies a Helmholtz equation

VW + (co2/C2)Ke@ = O. (1)

we further assume that it is’ ‘a good approximation [3]

to treat the modes as TEM with respect to the direction

of the strips (x direction). Since the medium is uniform

in the direction of the strips, it must be possible to find

wave functions of the form

i.e., wave functions having the form of normal-mode

functions, for which the effect of translation in the x

direction is change of phase only. From (1), U(y,.s)

satisfies

w+%+($Keff-k2)u’=o ‘2)

azll

According to the electromagnetic field equations, the

assumption that the wave is TEM with respect to x

implies

k2 = (u2/C2) K.ff. (3)

Hence U satkfies

(4)

we may take U to represent an electric potential defined

in a two-dimensional manifold, namely, the vz plane.

Coom%nate Axes: Having previously chosen x parallel

to the (infinite) length of the strips, we take y upward,

perpendicular to the substrate surface, and z horizontal

and transverse to the strips. The grounded lower surface

of the substrate is taken to be the xz plane. See Fig. 2.
NOW, since the arraY of strips is periodic with respect

to translation in the z direction, with period (unit cell

dimension) p, there must exist solutions (Bloch functions

[4]) i.n the form

U(y,z) = f(y,~) exp (iQ.s/p) (5)

in which j (Y,z) is periodic with period p. In anticipation

of th,e glide-plane symmetry of the meander-line con-

figuration contemplated (Fig. 2) it is convenient to take

the unit cell dimension p to embrace two neighboring

strips. With (5), we have from (4),

(6)

Fourier series expansion of the complex periodic function

f(Y7~)

j(v,z) = ~ Fro(y) exp (27rimz/p). (7)
w-m

Equ%tion (6) yields the following equation for the Fourier

coefficients Fn(y):

%H’’;mYFm=O
Define pm by

(8)

& =
(p+27rm

P“

Thus,, according to (8), F~(y) k proportional to

exp ( =tL%y).

Using (5), (7), and (8), we may take U to be

I
Z C~ exp (@x) sinh I & I V,
m

o:< Y<HI ,

u(y,~?)=
~ L exp (ii?ti) sinh I % ] (Hz – Y),
m

H,<y<H2 (9)
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where HI and Hz are, respectively, the heights of the

substrate surface and upper shield plane above the bottom

ground plane. Determination of the coeflkients Cm and

D. follows from the boundary conditions on U and on

D. = Keo( – t)U/3y) at the substrate surface. Continuity

of U yields

D. sinh I & I HI

F. “
(lo)

sinh I i?~ I (H9 — Hl) “

III. THE GREEN’S FUNCTION

Considering the unit cell and its boundaries, we proceed

to solve the boundary-value problem for the scalar poten-

tial U(y,Z). If the configuration of the conductor and

dielectric boundary are complicated (as in the case of

some CFA slow-wave structures where the dielectric

substrate is slotted or is made in the form of a series of

disjoint bars, or where the thickness of the conducting

strips cannot be neglected), then it is necessary to resort

to methods involving finite difference, image, discrete

Green’s function, or other numerical techniques [5] for

determination of U (y,z). In the present discussion we

shall illustrate the principles of the formulation by con-

sidering a simple microstrip structure in which the sub-

strate–vacuum interface is flat and in which the strip

thickness is negligible. In this case the imposition of

boundary conditions for determination of the periodic

function .f(y,z), expressed as a Fourier series in (7), can

be carried out directly.

The unit cell contains two strips. Hence, for each value

of p there exist two linearly independent solutions of (6),

corresponding to two possible independent combinations

of assignments of potential to the two strips. In view of

the mirror symmetry, it is natural to choose the two

solutions to be odd and even, respectively, with respect

to reflection in the central xv plane of the cell. Under the

substitution z --+ -z, (6) is not invariant because of the

presence of the first-order derivative which appears as a

consequence of the form of z dependence assumed in

(5). It is invariant, however, under the simultaneous

substitutions z + —z and f-+ f *, where * denotes the

complex conjugate. We may therefore choose two sym-

metry-adapted functions according to

fo(Y,–z) = –fo’(%z)

fe(v, –z) = +fe* (%2)

where o and e refer to the designations

respectively.

(11)

odd and even,

With the boundary conditions for the infinite array of

parallel strips completely specified as described in the

preceding, it is convenient to determine the distribution

of charge and current on the conducting strips in two

stages. The first stage is the determination of a Green’s

function appropriate to the dielectric-conductor con-

figuration of the unit cell. As in former applications of

this method [3], the Green’s function may be taken to

represent the potential created by a very narrow uni-

formly charged elementary substrip. (For computational

purposes, sources of finite width are more convenient

than the singular line sources ordinarily associated with

the analytic concept of the Green’s function.) The second

stage in the determination of the normal modes on the

array of parallel strips is the subdividing of each strip into

a number of such narrow elements, and, with use of the

Green’s function which specifies the potential per unit

charge at the location of each element, determining the

charge distribution required to make the cross section of

each conducting strip equipotential.

Let a substrip of width a be centered at z’ and furnished

with charge of uniform surface density u. (It is anticipated

that the width W of the strips themselves will be set equal

to a multiple, say N, times the substrip width a.) The

boundary condition on D. is

With the assumption of uniform charge density a = A/a
on the substrip, we obtain with the aid of ,(9), (10), and

(12),

cm =
sin &a/2 1 1

%ILIP
exp ( –@ti’)

&a/2 sinh I & 1H, coth I & ] (Hz – H,) + K coth ] /3~ I H, “

Denote the resulting potential due to a single substrip by g (y,z I Hl,z’); we obtain
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IV. NORMAL MODES ON AN INFINITE ARRAY

The Green’s function determined as in (13) may now be
0.2–

applied to the problem of determining the parameters

of the normal modes of propagation on the infinite array
0.1– U -!

of parallel strips illustrated in Fig. 1.
/

I..
o ..,’,

The charge distribution on the N substrips of a strip
-. ,<-

‘, ,

of width W k given by i%,n = 1,. . . ,N. This distribution
/

-0.1

is required to fulfill the following conditions: that each

strip cross section be equipotential, that the phase incre- -0.2 ~ ,n, ,,,
ment between the two sides of the unit cell equal p, and

that the potential satisfy the symmetry specification

of (11). In view of the uniformity of strip spacing, for

a mode of phase p per unit cell there must be a phase

difference between strips of q/2 for an even mode, and

for an odd mode v/2 together with reversal of sign, i.e.,

altogether, a phase difference of p/2 + T for an odd mode.

For the unit cell centered id z = O with strips centered at

z = +p/4 we may set the potential equal to exp (+&/4)

for the right strip and ~ exp (– ip/4) for the left; –

for the odd and + for the even modes.

Now let us suppose the strips dhided into N substrips,

with the nth substrip of the strip on the right side of the

unit cell bearing charge of linear density 1., then n = 1,

. . .,N. Let

zn=~+~(n–+), n= 1,. ..,N. (14)

The contribution to the potential at the position

of the n’th substrip due to the charge on the nth is

hng(Hl,zn, I Hl,zn). To determine the h., we set the po-

tential of the strip equal to exp ( +ip/4) :

~ [hng(H,,zn I H,,zn) & &*g(H,,z., I H,-.z.)]
n=l

– exp (&/4),. n’ = 1,.00,N (15)

where — and + refer to the odd and even modes, respec-

tively. Solution of this N X N system for the N values

of k. yields, for each p, the charge (and current) distribut-

ion over the strip cross section. This is illustrated in

Fig. 3(a) and (b), which shows the width v of the unit

cell divided into 80 elements. In this and all of the follow-

ing illustrations the substrate dielectric constant con-

templated is K = 6.50 (beryllium oxide) and the strip

configuration is given by W/Hi = 0.720, S/Hi = 0.912

(see Fig. 2), with the upper ground plane position given

by Hz/HI = 2.600. For this computation, each strip has

been divided into ten substrips, and the linear charge

-40 -30 -20 -lo 0 10 20 30 40

UNITS OF p/SO

(a)

0.2

t

0.1

k

u
,

0
..’

,.
,/

:

-0.1

-0,2

~

UNITS. OF P/80

(b)

Fig. 3. Charge distribution ~m,N = 10, on the two strips of the
unit cell, for the normal modes at p = 20°. (a) Odd mode. (b)
Even mode. The linear charge density is expressed in picofarads
per meter. The solid curves represent the real part; for the
imaginary part, represented by the dashed curves, the scale is
expanded x10.

u (’,.~
,-

/’

/

~L
10 20 30 4

density on each substrip is expressed in picofarads per

meter. The value of p is 20°. The solid curves represent

the real part; for the imaginary part, represented by the

dashed curves, the scale is expanded X10. The potential

U(HI,Z) at the substrate surface due to this charge dis-

tribution is shown in Fig. 4(a) and (b). The potential is

expressed in volts. Here again, for the imaginary part, the

scale is expanded X10,

The total charge Q

Q=$L (16)
n-1

is real. Since it corresponds to a potential of magnitude

1 V, it equals the capacitance per strip CK7 expressed in

picofarads per meter. To complete the solution of this

part of the problem in the quasi-TEM approximation, we
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Fig. 4. Potential U(H,,Z) in the unit cell forthenormal modesat
~ = 20”. (a) Odd mode. (b) Even mode. The potential is ex-
pressed in volts. The solid curves represent the real part; for the
imaginary part, represented by the dashed curves, the scale is
expanded x1O.

carry out the calculation of Q twice: once using the value

K of the substrate dielectric constant contemplated, and

again with K replaced by unity. The second calculation

yields the vacuum capacitance Cl. The ratio CK/Cl is the

effective dielectric constant K.ff. Fig. 5 shows Keff as a

function of q for the illustrative example specified earlier

with K = 6.50. We note that for the even mode at P = O

all the strips are at the same potential, namely, 1 TJ. There

is very little fringing of the field between the strips into

the vacuum above; consequently, the value of the effective

dielectric constant, about K,ff = 6.0, is o~y slightly less

than K itself. For the odd mode at q = O, on the other

hand, the potential alternates between +1 and – 1 V

on successive strips; the field is concentrated between

the edges of adjacent strips, where the dielectric is about

equally composed of the substrate material and vacuum.

Hence Km is roughly equal to the average value

(K+ 1)/2 = 3.75. With increasing q the field distri-

bution shifts from one of these two extremes to the other,

with the fields of the two modes becoming identical at

the center of the graph, at p = 180°.

The velocity of propagation v is given by

v
; = (K,ff)-’l’ (17)

(where c is the characteristic velocity of empty space) and

:
$’
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/
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Fig. 5. Effective dielectric constant of the normal modes K.,,-..
versus the phase per unit cell q.
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Fig. 6. Characteristic impedance’ of the normal modes 20 versus
the phase per unit cell ~.

the normal-mode characteristic impedance ZO (Fig. 6) is

zo=-&= .1

WI (K.ff) 112“
(18)

V. THE DISPERSION LAW FOR THE

MEANDER LINE

We may visualize the meander line as having been

formed by selecting a section of width A out of the infinite

array of parallel strips and making connections at alter-

nate ends, as illustrated in Figs. 1 and 2. In the present

approximation we regard *he connecting links as localized

elements, disregarding their electrical length. More com-

plicated assumptions regarding the length and scattering

properties (or equivalent-circuit parameters) of the links

can be treated within the scope of the present theory; such

assumptions are capable of leading to improved realism,

particularly with regard to the prediction of stopbands

which are produced by the resultant effect of reflections

from these regularly spaced obstacles. We shall see, how-

ever, that in the microstrip embodiment of the meander

line, the existence and features of the stopbands are

primarily associated with another effect, namely, the
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difference in velocity between the even and odd modes,

originating in their difference in field distribution in the

inhomogeneous dielectric-vacuum medium, as described

in the previous section.

We proceed to form waves satisfying the assumed

boundary conditions at the connecting links by super-

position of the normal modes. Considering the two strips

in the unit cell, denoted by 1 and 2 for the left and right

strip, respectively, we have the following voltages and

currents:

01 = [a+ exp ( +ik.z) + a. exp ( —ikez)

– b+ exp ( +ikoz) + b_ exp ( –ik.z) ] exp ( –ip/4)

V2 = [a+ exp ( +ik.z) + a_ exp ( —iit.x)

I, =

12 =

+ b+ exp ( +ikoz) – b. exp ( –ik.z) ] exp ( +ip/4)

(19)

{ (1/2.) [a+ exp (+ik.z) – a_ exp ( –dcez) ]

+ (1/ZO) [–b+ exp (+~kt) – b.’exp ( –dc~x) ]}

. exp ( —ip/4)

{ (1/2.) [a+ exp (+ik.z) – a- exp ( –ik.z) ]

+ (1/2,) [b+ exp (+Mw) + b- exp ( –ikoz) ]}

. exp (+&Y/4) (20)

in which the coefficients a+ and b+ are the amplitudes

of the even and odd modes, respectively, with propagation

components in the + z and — z directions. Boundary

conditions: if we make the simplest assumption, namely,

to treat the connecting links as simple short circuits, we

have

VI(*A) = ?J2(*A) II(*A) = –12(+4)

V2(–+A) = V3(–*A) I,(–*A) = –13(–+A)

v8(z) = q(z) exp (ip) ls(z) = II(z) exp (ip).

(21)

If a more sophisticated assumption were to be introduced

for the scattering effects of the discontinuities at the sides

of the meander line, the appropriate impedance-matrix

relation would replace the first two pairs of relations in

(21). The third pair embodies the iterative phase assump-

tion and would remain unchanged.

Equations (19) and (20), with the conditions (21),

yield a system of homogeneous equations for the mode

amplitudes a+ and b+, We put the system into the following

form:

—iEeT — iT/ee’ — ~o l/c.

iT/ee &eT – l/c. e.

iveJ T — iv/eeT — f=o – 1/60

— iq/eeT iqqJT — l/eo — e.

a+

a–

b+

b-

= o (22)

1199

where T = tan q/4, E = exp (ilcA/2), and ~ = ZJ2..

Here and in (20) the subscript o of (18) has been replaced

by o and e for the odd and even mode speties.

The characteristic equation for the system (22), which

constitutes the dispersion law of the microstrip

line, is

I
z tan k4A/2 tan lcOA/2

v

‘an’ i = i
cot k@4/2 cot k@4/2

meander

(23)

with the upper and lower equations yielding alternately

the successive foiward- and backward-wave branches of

the dispersion diagram, which is shown in Fig. 7. In the

figure, the solid curves represent solutions of (23). The

microstrip embodiment assumed for this illustration is the

same :1s that for Figs. 3–6. As described before, the speci-

fications are as follows:

K = 6,50

G, = 0.0625 in

A = 0.492 in

W/H, = 0.720

S/H, = 0.912

H2/H, = 2.60.

In Fig. 7, the slanting dashed lines represent the effect

of neglecting the coupling between the parallel strips

of the meander line.

A meander-line slow-wave ‘structure of the preceding

specifications was tested at Lincoln Laboratory; the

observed phase values, determined by a resonance method,

are represented by the open points in Fig. 7, and the

observed stopbands are represented by the horizontal

dashed bars. To observe the phase per unit cell as a func-

tion c]f frequency, a ‘section ten unit cells in length was

prepared. The substrate is the ceramic beryllium Oxidej

and the circuit and ground plane are “chrome-gold”

v (GHz)

Fig. 7. Dispersion diagram for the microstrip meander line. As
discussed in the text, the points and horizontal dashed bars are,
respectively, the experimentally observed phase values and stop-
bancls. The solid curves represent solutions of (23). The slanting
dashed lines represent the limiting case of uncoupled meander
lines.
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prepared’by photolithographic techniques. The upper

ground plane is a separate brass plate. The section was

placed in a resonator with large conducting walls atboth

ends, and was excited by a swept-frequency signal genera-

torintherange fromO.lto8GHz. A“comb’’o fresonances

was observed. Byprobing the RF field, the order (number

of wavelengths) was determined, and the frequency of

each was observed with a cavity wavemeter. From the

order of each resonance, the phase per unit cell was evalu-

ated. In a separate measurement of insertion loss of the

meander line, the frequency ranges of the stopbands were

observed.

Stopbands are to be expected in a periodic structure of

this type at those frequencies for which the phase dif-

ference between successive djscontinuities is an integer

multiple of 180°. For microstrip there is an additional

influence leading to the appearance of stopbands, as is

apparent from the dispersion equation (23 ). The effective

dielectric constant values are in general different for the

odd and even modes; therefore, so also are the propagation

constants lco and k.. At frequencies for which the argu-

ments lcOA/2 and keA/2 are in different quadrants (such

as kOA/2 < 90° and lc~A/2 > 90°, as occurs in the vicinity

of 4.7 GHz in Fig. 7) the right-hand side of (23) is nega-

tive, which requires that the phase parameter q be

imaginary; i.e., propagation is cut off. This phenomenon

is obviously a distinctive characteristic of microstrip or

of transmission media which share the property of in-

homogeneity as represented in Fig. 5.

Solution of the system (22) also jields the mode comp-

osition of the meander-line field, namely,

a+ = a– b~=b. (24)

and

(25)

in which, according to (24), the sign designations on a and

b maybe dropped. The double sign in (25) corresponds to

the two dispersion branches of (23) (the minus sign goes

yith the fundamental forward-wave branch). We may

deduce a meander-line image impedance (Fig. 8),

Zi.=m=
I,(O)

(Zezo )tan kJ/2 112 ‘

tan k.A/2

{

where, of the two alternatives corresponding to the two

branches of the dispersion diagram, the upper goes with

the fundamental forward-wave branch.

VI. THE INTERACTION IMPEDANCE,

As defined, for example, by Mourier [6], the inter-

action impedance Zint is

(Zint)m = (1/2P@) Im (Eufizm”)

200

150 —

%
E

~ 100 —

ti=

- .— z
50 —

00

K = 6.50

I 1 I 1 I 1 I ( I 1
0 2 4 6 s 1{

v (GHz)..—
Fig. 8. Image impedance Zin. The three bars in the center of the

figure indicate for comparison the characteristic impedances of a
coupled pair of lines [3] of the same configuration (upper and
lower bars) and of a single line (center bar).

w-here Eum and E.~ are the thrn spatial Fourier component

(mth space harmonic) of the microwave electric field

at a specified level in the interaction region above” the

meander-line. surface; P is the microwave power, and

b = v/p is the propagation constant for propagation in
the meander-line z direction.

A parameter of the character of Zj.~, such as that

defined in [6] and in a slightly different manner in [2],

has long been employed in the theory of beam-type

vacuum tubes to characterize the coupling between the

RF electromagnetic field and the electron beam in the

interaction region above the slow-wave structure, in

such a way as to provide a measure of the net rate of

RF power amplification, at least in the limit of small RF

signal amplitude.

To determine the power flow, the group velocity must

be evaluated with the aid of the dispersion relation, and

the electromagnetic energy density must be determined

through use of the capacitance; the principles are essen-

tially the same as those presented in [2]. The result for

the present meander-line formulation is

P=%,
P [w’+s%!3+!#(’-%&y

The components of the electric field at the specified loca-

tion in the interaction region are available directly by

differentiation of the potential @(x,y,z) determined earlier

in Sections II–V.

An example of the interaction impedance is presented

in Fig. 9. Zi~t in the figure is for the meander-line con-

figuration illustrated in the previous figures, for the level

Y = HI, i.e., at the substrate surface, and for m = O;

i.e., for the zero-order space harmonic. (The irregularity y

of the curve is due in part to the somewhat rough &f-

ferentiation of the dispersion curve which was employed

in determining the group velocity v~.) This rather simple

example is presented to illustrate the potential of the



WEISS : MICROSTTUP SLOW-WAVE STRUCTURE 1201

1
0 1 2 3 4

v (GHz)

Fig. ,9. Interaction impedance Ztit for the zero-order space har-
momc m = Oat the center of the substrate surface (z,y) = (O,HJ.

present formulation in applications such as CFA develop-

ment where atic,urate determination of the RF fields must

be made in a relatively complicated inhomogeneous

transmission line cross section,

VII. CONCLUSION

Computations carrying out the analysis presented

earlier have been performed on the CP/CMS Time-

Sharing System ,at MIT Lincoln Laboratory. In a first

program, the Fourier-series formulation of the Green’s

function (13) is evaluated at the substrate surface y = Hl,

and the system (15 ) is solved for the charge distribution.

The output of this program is a table giving the even- and

odd-mode velocities and characteristic impedances as

functions of the iterative phase parameter q. A second

program uses these data as input to find, for each fable

entry, the corresponding frequency satisfying the charac-

teristic equation (23). With this solution, constituting

the dispersion law of the meander line, the fields, and. all

other parameters of the structure, are completely de-

termined.
It is e~dent that this framework is not limited to the

present example of the meander line, but is suitable for

the analysis of a wide range of complex periodic trans-

mission line structures in the quasi-TEM regime. Beyond

the immediate objective, namely, to obtain realistic data

for comparison and design guidance on a class of slow-

wave structures for crossed-field amplifier development,

the formulation illustrates how a technique for systematic

accounting of the complex fields in a periodic medium can

be ca,rried out by a combination of logical, analytical, and

computational methods.
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