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Dispersion and Field Analysis of a Microstrip Meander-Line
| Slow-Wave Structure

JERALD A. WEISS, SENIOR MEMBER, IEEE

Abstract—A structute which is important as an example of a
spatially periodic medium for microwave propagation is analyzed
theoretically, with rigorous consideration of its partial dielectric
composition, symmetry properties; and field configuration relating
to its use for electron-wave interaction in a ctossed-field amplifier
(CFA). The analysis is carried out in a quasi-TEM approximation,
leading to determination of a complex potential function within the
unit cell and the associated normal-mode parameters: effective di-
electric constant, phase velocity, and charaéteristic impedance, as
functions of phase per cell and mode symmetry. With imposition of
meander-iine boundary conditions, solutions of the characteristic
equation for the dispersion law of the structure are computed,
including the influebce of the inhomogeneous dielectric-vacuum
construction of microstrip. Agreement with the observed phase and
stopband features of a representative structure is very good. Power
distribution and group velocity are calculated, and an interaction
impedance, representing the coupling between the RF field and an
electron beam for estimation of CFA performance is also calculated.
The method lends itself to detailed computations, including the
effects of structural features of practical slow-wave circuits.

I. INTRODUCTION

YHE PASSAGE of electromagnetic radiation through
spatially periodic media arises in.a variety of physical
situations, including some as widely diverse as X-ray
diffraction by crystals, transmission and reception by
microwave airay antennas, optical integrated circuits, and
RF filtering. From consideration of the symmetry prop-
erties of the medium and the logical consequences of these,

it is possible to deduce certain qualitatively distinctive

features, such as the existence of stopbands, properties
of the dispersion function, and angular diffraction lobe
patterns. For most applications, however, the generation
of useful design information and the realistic comparison
of theoretical and experimental results are possible only
if the boundary-value problems involved can be solved
in a substantially rigorous manner. With the aid of sym-
metry principles the problem can be reduced to that of
field analysis in a single unit cell of the periodic medium.
. This reduced problem may itself be a rather formidable
task, and the value of the results depends on the recogni-
tion and analysis of the effects of significant structural
parameters. Various simplified versions of the slow-wave
structure for the vacuum-tube crossed-field amplifier
(CFA) have been treated in the microwave literature
[1], [2]. The objective of the present analysis is to calcu-
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late the dispersion function, iterative and interaction
impedances, and other details of the microstrip meander
line, incorporating the dielectric and conductor configura-
tion in sufficient detail to permit a realistic assessment
of the electrical effects of design variations which might
be introduced in order to fulfill the practical CFA design
constraints.

1. THE QUASI-TEM MODEL

The propagation medium contemplated for the analysis
of the microstrip meander line is an infinite array of
parallel strips on a shielded grounded dielectric substrate,
as illustrated in Fig. 1. As indicated in the figure, the

‘mheander line will be considered to occupy a region of

width A, with conducting links connecting the ends of
adjacent strips alternately at the two sides of that region.
With the electromagnetic fields satisfying boundary
conditions appropriate to the configuration of conductor
and dielectric, the remainder of the infinite array outside
the region of interest may be discarded (or alternatively,
as with guided-wave structures generally, it may be
regarded as an infinite repetition of the same configuration
of matter and of corresponding fields). The procedure
will be to seek solutions of the wave equation on the
complete infinite array which not only conform to the
arrangement of its boundaries but also reflect its symmetry
properties. The principal value of this approach, as con-
trasted for example with calculations which begin with the
determination of the fields on an individual isolated strip,
is that by this means the overlap and consequent coupling
of fields are rigorously incorporated for neighboring strips
of all orders.

The general form of the normal modes of propagation in
the infinite array is that of waves having constant ampli-
tude and uniform phase variation & per unit length in the
z direction, parallel to the strips. In addition, as in the
case of filters and other periodic networks generally, these
modes are characterized by the parameter ¢, denoting a
constant phase increment per unit cell (dimension p) in
the z direction, which becomes the resultant direction of
propagation in the meander line. Thus the planes of con-
stant phase imake, in general, a slant angle 4arctan (kp/¢)
with the z axis, and for each value of ¢ there is a degenerate
set of four such waves, corresponding to propagation
directions in each of the four quadrants relative to the
z and z axes. An additional two-fold degeneracy with
respect to the parameter ¢ arises due to our choice of unit
cell embracing two conducting strips; it is a manifestation
of the reflection symmetry of the unit cell.
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Fig. 1. An infinite array of parallel strips, with respect to which
the symmetry-adapted. normal modes of propagation are defined.

It should be noted that the foregoing symmetry prop-
erties are shared by all modes of propagation on the
infinite microstrip array. The present analysis is limited,
however, to the fundamental modes (to be defined later)
which govern the behavior of the slow-wave structure in
the frequency range which is of interest for most ap-
plications.

Determination of the normal modes of propagation is
performed by a Green’s function method in which the
charge and current distribution on the conducting strips
is rigorously determined also, thus yielding a capacitance
per strip, an effective dielectric constant, and a charac-
teristic impedance for each mode.

It then remains to obtain a superposition of the normal
modes so as to fulfill the meander-line boundary condi-
tions, at the connecting links between strips. Solution of
this problem leads to determination of the relation between
frequency and the phase parameter o, i.e., the dispersion
relation for the microstrip meander line. The wave field
resulting from the superposition of modes may be intui-
tively visualized as a wave which propagates in meandering
fashion, following the meandering conductor configura-
tion. All the other quantities of interest are thereby
determined, including the RF field configuration and
all information required for study of the interaction with
an electron beam.

To begin the analysis, we assume that propagation in
the medium illustrated in Fig. 1 can be characterized by
an effective dielectric constant K., which depends on the
mode of propagation considered. We assume that a wave
function ®(z,y,2) representing a mode in this medium
satisfies a Helmholtz equation

V2P + (w?/) Koes® = 0. (1)

We further assume that it is a good approximation [3]
to treat the modes as TEM with respect to the direction
of the strips (z direction). Since the medium is uniform
in the direction of the strips, it must be possible to find
wave functions of the form

@(z,y,2) = U(yz2) exp (kikz)

i.e., wave functions having the form of normal-mode
functions, for which the effect of translation in the xz
direction is change of phase only. From (1), U(y,z)
satisfies

1195

eU U

—+~—+( eff—k2>U==0. (2)
According to the electromagnetic field equations, the
assumption that the wave is TEM with respect to 2
implies

k2 = (w?/c?) Kess. (3)
Hence U satisfies
U U ‘
0. 4
W + = o (4)

We may take U to represent an electric potential defined
in a two-dimensional manifold, namely, the yz plane.

Coordinate Axes: Having previously chosen z parallel
to the (infinite) length of the strips, we take y upward,
perpendicular to the substrate surface, and z horizontal
and transverse to the strips. The grounded lower surface
of the substrate is taken to be the zz plane. See Fig. 2.

Now, since the array of strips is periodic with respect
to translation in the z direction, with period (unit cell
dimension) p, there must exist solutions (Bloch functions
[4]) in the form

U(y,z) = f(y,2) exp (i¢z/p) (3)

in which f(y,2) is periodiec with period p. In anticipation
of the glide-plane symmetry of the meander-line con-
figuration contemplated (Fig. 2) it is convenient to take
the unit cell dimension p to embrace two neighboring
strips. With (5), we have from (4),

32]’ f ;¢ of ¢

2t T2 ——f=0 (6)
pa P

Fourier series expansion of the complex periodic function

f(y2)

Z Fu(y) exp (2wimz/p). Q)

m=—00

f(yrz) =

Equation (6) yields the following equation for the Fourier
coefficients F,.(y):

2 2
dFm_(go—I-Qﬂ'm) 7 ®)
dy’ p S
Define 8. by
’ 2
g, = £ 2mm
¥4

Thus, according to (8), F.(y) is proportional to
exp (£BnY).

Using (5), (7), and (8), we may take U to be
E Cm exp (25”12) Sinh l Bm l Y,
0<y <H

U(ye) =
ZDm exp (’LBmZ) Sinh I Bml (H‘z - y)y

H <y<H (9
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Fig. 2. Dimensions and coordinates for the microstrip meander
line, showing the unit cell.

where H; and H. are, respectively, the heights of the
- substrate surface and upper shield plane above the bottom
ground plane.. Determination of the coefficients (., and
D,, follows from the boundary conditions on U and on
D, = Ke,(—0U/dy) at the substrate surface. Continuity
of U yields '

1_),_,,_ sinh | 8. | H1

C, sinh|Bn| (Hy — Hy) ' (10)

III. THE GREEN’S FUNCTION

Considering the unit cell and its boundaries, we proceed
to solve the boundary-value problem for the scalar poten-
tial U(y,2). If the configuration of the conductor and
diclectric boundary are complicated (as in the case of
some CFA slow-wave structures where the dielectric
substrate is slotted or is made in the form of a series of
disjoint bars, or where the thickness of the conducting
strips cannot be neglected), then it is necessary to resort
to methods involving finite difference, image, discrete
Green’s function, or other numerical techniques [5] for
determination of U(y,). In the present discussion we
shall illustrate the principles of the formulation by con-

sidering a simple microstrip structure in which the sub-

strate-vacuum interface is flat and in which the strip
“ thickness is negligible. In this case the imposition of
boundary conditions for determination of the periodic
function f(y,2), expressed as a Fourier series in (7), can
be carried out directly.
The unit cell contains two strips. Hence, for each value
of ¢ there exist two linearly independent solutions of (6),
corresponding to two possible independent combinations
of assignments of potential to the two strips. In view of
the mirror symmetry, it is natural to choose the two
solutions to be odd and even, respectively, with respect
to reflection in the central zy plane of the cell. Under the
substitution z — —z, (6) is not invariant because of the
~ presence of the first-order derivative which appears as a
consequence of the form of z dependence assumed in
(5). It is invariant, howevéer, under the simultaneous

sin Bma/2 1

substitutions z — —z and f— f* where * denotes the
complex conjugate. We may therefore choose two sym-
metry-adapted functions according to

fo(yr -—Z) _fa*(yrz)
Fo(y,—2) = +f*(y,2) (11)

where o and e refer to the designations odd and even,
respectively. :

With the boundary conditions for the infinite array of
parallel strips completely specified as described in the
preceding, it.is convenient to determine the distribution
of charge and current on the conducting strips in two
stages. The first stage is the determination of a Green’s
function appropriate to the dielectric-conductor con-
figuration of the unit cell. As in former applications of
this method [37], the Green’s function may be taken to
represent the potential created by a very narrow uni-
formly charged elementary substrip. (For computational
purposes, sources of finite width are more convenient
than the singular line sources ordinarily associated with
the analytic concept of the Green’s function.) The second
stage in the determination of the normal modes on the
array of parallel strips is the subdividing of each strip into
a number of such narrow elements, and, with use of the
Green’s function which specifies the potential per unit
charge at the location of each element, determining the
charge distribution required to make the cross section of
each conducting strip equipotential.

Let a substrip of width a be centered at 2’ and furnished
with charge of uniform surface density o. (It is anticipated
that the width W of the strips themselves will be set equal
to a multiple, say N, times the substrip width a.) The
boundary condition on D, is

il

: o, e —2'| £ a/2
DS — D~ =

07 lZ—Z'l>a/2

With the assumption of uniform charge density ¢ = \/a
on the substrip, we obtain with the aid of (9), (10), and
(12),

(12)

1

m

S éx (—1Bn2’)
€ l Bm l D P

Bma/2 sinh | Ba| Hicoth|B.| (Hy — Hi) + K coth | B | Hy~

Denote the resulting potential due to a single substrip by ¢(y,2 | Hi,2") ; we obtain
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1 . exp [iBm(2 — 2’) ] sin B.a/2 sinh | B.|y 1

g(y)z/, H,?) = 6_ >

‘0m lﬁmlp 6ma/2

sinh | Bn | Hy coth | B | (H,

" Hy) + K coth | B | Hi’
| 0<y<H

exp [iBn(z — )] 5in Bua/2 sinh | B | (Ha — ¥) 1

| Bm | P Bma/2

€

IV. NORMAL MODES ON AN INFINITE ARRAY

The Green’s function determined as in (13) may now be
applied to the problem of determining the parameters
of the normal modes of propagation on the infinite array
of parallel strips illustrated in Fig. 1.

The charge distribution on the N substrlps of a strip
of width W is given by M,,n = 1,-++,N. This distribution
is required to fulfill the follovving conditions: that each
strip cross section be equipotential, that the phase incre-
ment between the two sides of the unit cell equal ¢, and
that the potential satisfy the symmetry specification
of (11). In view of the uniformity of strip spacing, for
a mode of phase ¢ per unit cell there must be a phase
difference between strips of /2 for an even mode, and
for an odd mode ¢/2 together with reversal of sign, i.e.,
altogether, a phase difference of ¢/2 4+ = for an odd mode.
For the unit cell centered at z = 0 with strips centered at
2z = ==p/4 we may set the potential equal to exp (+7p/4)
for the right strip and = exp (—ip/4) for the left; —
for the odd and + for the even modes.

Now let us suppose the strips divided into N substrips,
with the nth substrip of the strip on the right side of the
unit cell bearing charge of linear density \,, then n = 1,

«+,N. Let

=—+ (n 1), n=1.N. (14)
The contribution te the potential at the position
of the n'th substrip due to the charge on the nth is
Mg (Hyzw | Hyzn). To determine the \,, we set the po-

~ tential of the strip equal to exp (+ip/4):

N
Z [kﬂg (thn' I Hl’zﬂ) =+ )\n*g (Hlyzm I Hl’ _zn) j

= exp (ip/4), =N (15)

where — and - refer to the odd and even modes, respec-
tively. Solution of this N X N system for the N values
of A, yields, for each ¢, the charge (and current) distribu-
tion over the strip cross section. This. is illustrated in
Fig. 3(a) and (b), which shows the width 2 of the unit
cell divided into 80 elements. In this and all of the follow-
ing illustrations the substrate dielectric constant con-
templated is K = 6.50 (beryllium oxide) and the strip
configuration is given by W/H, = 0.720, S/H, = 0.912
(see Fig. 2), with the upper ground plane position given
by H,/H, = 2.600. For this computation, each strip has
been divided into ten substrips, and the linear charge

n =1,

‘sinh | B | (H:

— H,) coth | B | (H; — Hy) + K coth | 8, | H,’

Hi<y<H. (13)
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Fig. 3. Charge distribution \,, N = 10 on the two strlps of the
umb cell for the normal modes at ¢ = 20° (a) Odd mode. (b)
Even mode. The linear charge dens1ty is expressed in picofarads
per meter. The solid curves represent the real part; for the
imaginary part, represented by the dashed curves, the scale is
expanded X10.

density on each substrip is expressed in picofarads per
meter. The value of ¢ is 20°. The solid curves represent
the real part; for the imaginary part, represented by the
dashed curves, the scale is expanded X10. The potential
U(H,z) at the substrate surface due to this charge dis-
tribution is shown in Fig. 4(a) and (b). The potential is
expressed in volts. Here again, for the imaginary part, the
scale is expanded X10. .
The total charge @

N
Q=3

n=1

(16)

is real. Since it corresponds to a potential of magnitude
1V, it equals the capacitance per strip Cx, expressed in
picofarads per meter. To complete the solution of this
part of the problem in the quasi-TEM approximation, we
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Fig. 4. Potential U(Hy,2) in the unit cell for the normal modes at
¢ = 20° (a) Odd mode. (b) Even mode. The potential is ex-
pressed in volts. The solid curves represent the real part; for the
imaginary part, represented by the dashed curves, the scale is
expanded X10.

carry out the calculation of @ twice: once using the value
K of the substrate dielectric constant contemplated, and
again with K replaced by unity. The second calculation
yields the vacuum capacitance C;. The ratio Cx/C; is the
effective dielectric constant K.y Fig. 5 shows K¢ as a
function of ¢ for the illustrative example specified earlier
with K = 6.50. We note that for the even mode at ¢ = 0
all the strips are at the same potential, namely, 1 V. There
is very little fringing of the field between the strips into
the vacuum above; consequently, the value of the effective
dielectric constant, about K = 6.0, is only slightly less
than K itself. For the odd mode at ¢ = 0, on the other
hand, the potential alternates between -+1 and —1 V
on successive strips; the field is concentrated between
the edges of adjacent strips, where the dielectric is about
equally composed of the substrate material and vacuum.
Hence K.: is roughly equal to the average value
(K + 1)/2 = 3.75. With increasing ¢ the field distri-
bution shifts from one of these two extremes to the other,
with the fields of the two modes becoming identical at
the center of the graph, at ¢ = 180°.
The velocity of propagation v is given by

v —1/2
o = (Ko)™ (17)

(where ¢ is the characteristic velocity of empty space) and
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Fig. 6. Characteristic impedance of the normal modes Z, versus

the phase per unit cell .

the normal-mode characteristic impedance Z, (Fig. 6) is

1
CCI (Keff) vz

Zy = (18)

L

vCx

V. THE DISPERSION LAW FOR THE
MEANDER LINE

We may visualize the meander line as having been
formed by selecting a section of width 4 out of the infinite
array of parallel strips and making connections at alter-
nate ends, as illustrated in Figs. 1 and 2. In the present
approximation we regard the connecting links as localized
elements, disregarding their electrical length. More com-
plicated assumptions regarding the length and scattering
properties (or equivalent-circuit parameters) of the links
can be treated within the scope of the present theory; such
assumptions are capable of leading to improved realism,
particularly with regard to the prediction of stopbands
which are produced by the resultant effect of reflections
from these regularly spaced obstacles. We shall see, how-
ever, that in the microstrip embodiment of the meander
line, the existence and features of the stopbands are
primarily associated with another effect, namely, the
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difference in velocity between the even and odd modes,
originating in their difference in field distribution in the
inhomogeneous dielectric-vacuum medium, as described
in the previous section.

We proceed to form waves satisfying the assumed
boundary conditions at the connecting links by super-
position of the normal modes. Considering the two strips
in the unit cell, denoted by 1 and 2 for the left and right
strip, respectively, we have the following voltages and
currents: '

v = [a; exp (+2kex) + a_ exp (—tkx)

— by exp (+ik,z) + b exp (—ik,x) ] exp (—ip/4)
v = [ay exp (4ikx) 4+ a_ exp (—tk.z) ﬂ

4+ by exp (+ik.x) — b_ exp (—ik,x) ] exp (+ip/4)

(19)
I, = {(1/Z)[as exp (+ikez) — a_ exp (—ikez)]
+ (1/Zo)[—by exp (+ikoz) — b_ exp (—ikoz)]}
-exp (—ip/4)
I, = {(1/Z,)[as exp (+ikex) — a_ exp (—ikex)]

+(1/Zy)[by exp (+tkox) + b_ exp (—ik,x) ]}
-exp (+ip/4)

in which the coefficients a. and b, are the amplitudes
of the even and odd modes, respectively, with propagation
components in the 4z and —=z directions. Boundary
conditions: if we make the simplest assuinption, namely,
to treat the connecting links as simple short circuits, we
have

(20)

n(34) = n(34) 1,(34) = —L,(34)
w(—34) = n(—34) I(—34) = —I;(—34)
vs(z) = v1(x) exp (o) I;(2) = Li(x) exp (ip).
(21)

If a more sophisticated assumption were to be introduced
for the scattering effects of the discontinuities at the sides
of the meander line, the appropriate impedance-matrix
relation would replace the first two pairs of relations in
(21). The third pair embodies the iterative phase assump-
tion and would remain unchanged. ‘

Equations (19) and (20), with the conditions (21),
yield a system of homogeneous equations for the mode
amplitudes a. and .. We put the system into the following
form:

—7e, T —iT/e, —e 1/e,| [as

1T /e, ze, T —1/e, € a_
=0 (22)

ine/T —in/e,T —e, —1/e,| | by

—in/e.T ine/T —1/eg —e, b_
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where T = tan ¢/4, ¢ = exp (tkA/2), and -9 = Z,/Z,.
Here and in (20) the subscript o of (18) has been replaced
by o and e for the odd and even mode species.

The characteristic equation for the system (22), which

-constitutes the dispersion law of the microstrip meander

line, is

tan k.A/2 tan k,4/2

Z,
tan? - = —
Z,

LR}

cot k,4/2 cot k,4/2 (23)

with the upper and lower equations yielding alternately
the successive forward- and backward-wave branches of
the dispersion diagram, which is shown in Fig. 7. In the
figure, the solid curves represent solutions of (23). The
microstrip embodiment agsumed for this illustration is the
same as that for Figs. 3-6. As described before, the speci-
fications are as follows:

K = 6.50
H, = 0.0625 in
A =0.492in
W/H, = 0.720
S/H; = 0.912
H,/Hy = 2.60.

In Fig. 7, the slanting dashed lines represent the effect
of neglecting the coupling between the parallel strips
of the meander line.

A meander-line slow-wave structure of the preceding
specifications was tested at Lincoln Laboratory; the
observed phase values, determined by a resonance method,
are represented by the open points in Fig. 7, and the
observed stopbands are represented by the horizontal
dashed bars. To observe the phase per unit cell as a fune-
tion of frequency, a section ten unit cells in length was
prepared. The substrate is the ceramie beryllium oxide;
and the circuit and ground plane are ‘“chrome-gold’”’

/
/
/
/
E
g K=6.50_|
o
3
LY
\
\
\
. HA———\
0 2 4 [ 8 10

v (GHz)

Fig. 7." Dispersion diagram for the mijcrostrip meander line. As
discussed in the text, the points and horizontal dashed bars are,

" respectively, the experimentally observed phase values and stop-
bands. The solid curves represent solutions of (23). The slanting
l(mshed lines represent the limiting case of uncoupled meander
ines.
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prepared by photolithographic techniques. The upper
ground plane is a separate brass plate. The section was
placed in a resonator with large conducting walls at both
ends, and was excited by a swept-frequency signal genera-
tor in the range from 0.1 to 8 GHz. A “comb”’ of resonances
was observed. By probing the RF field, the order (number
of wavelengths) was determined, and the frequency of
each ‘was observed with a cavity wavemeter. From the
order of each resonance, the phase per unit cell was evalu-

ated. In a separate measurement of insertion loss of the’

meander line, the frequency ranges of the stopbands were
observed.

Stopbands are to be expected in a periodic struqture of
this type at those frequencies for which the phase -dif-
ference between successive discontinuities is an integer
multiple of 180°. For microstrip there is an additional
influence leading to the appearance of stopbands, as is
apparent from the dispersion equation (23). The effective
dielectric constant values are in general different for the
odd and even modes; therefore, so also are the propaga,tion

constants k, and k.. At frequencies for which the argu-

ments k,4/2 and k.A/2 are in different quadrants (such
as k,4/2 < 90° and k,4/2 > 90°, as occurs in the vicinity
of 4.7 GHz in Fig. 7) the right-hand side of (23) is nega-
tive, which requires that the phase parameter ¢ be
1mag1nary, i.e., propagation is cut off. This phenomenon
is obviously a distinctive characteristic of microstrip or
of transmission media which share the property of in-
homogeneity as represented in Fig. 5. ‘

Solution of the system (22) also yields the mode com-
position of the meander-line field, namely,

ar = Q- b+ = b. (24)

b =F (_Z_z sin lceA>1/2
a  \Z,sink4
in which, according to (24), the sign designations on @ and
b may be dropped. The double sign in (25) corresponds to
the two dispersion branches of (23) (the minus sign goes

with the fundamental forward-wave branch). We may
deduce a meander-line image impedance (Fig. 8),

12 »
(ZeZ tan k,,A/2)

and

(25)

°tan k,A/2
) ?)1(0)
in 11(0)
_ (ZZ cot lc,,A/Z)”2
“ cot k.A/2

where, of the two alternatives corresponding to. the two
branches of the dispersion diagram, the upper goes with
the fundamental forward-wave branch.

VI. THE INTERACTION IMPEDANCE

As defined, for example, by Mourier [6], the inter-
action impedance Ziy,; is

(Zint)m = (1/2P62) Im (EymEzm*)

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, DECEMBER 1974

200

150 1~

(ohms)

100 |-

Zin

50—

L | I |
o} 2 4

(o]
v (GH2)

Fig. 8. Image 1mpedance Zin. The three bars in the center of the
figure indicate for comparison the characteristic impedances of a
coupled pair of lines [3] of the same configuration (upper and
lower bars) and of a single line (center bar).

where E,., and E.,, are the thm spatial Fourier component
(mth space harmonic) of the microwave electric field
at a specified level in the interaction region above the
meander—hne surface; P is the microwave power, and

= ¢/p is the propagation constant for propagatlon in
the meander-line z direction.

A parameter of the character of Zj,, such as that
defined in [6] and in a slightly different manner in [2],
has long been employed in the theory of beam-type
vacuum tubes to characterize the coupling between the
RF electromagnetic field and the electron beam in the
interaction region above the slow-wave structure, in
such a way as to provide a measure of the net rate of
RF power amplification, at least in the hmlt of small RF
signal amplitude.

To determine the power flow, the group velocity must
be evaluated with the aid of the dispersion relation, and
the electromagnetic energy density miust be determined
through. use of the capacitance; the principles are essen-
tially the same as those presented in [2]. The result for
the present meander-line formulation is 7

2 1 )
_24 , [I al (1 + sm»l.ceA> N [ b2 (1 sin %, A)] .
D V2, kA Vos k,A
The components of the electric field at the specified loca-
tion in the interaction region are available directly by
differentiation of the potential ®(z,,2) determined earlier
in Sections II-V,

An example of the interaction impedance is presented
in Fig. 9. Zi; in the figure is for the meander-line con-
figuration illustrated in the previous figures, for the level
Yy = Hi, le., at the substrate surface, and for m = 0;
Le., for the zero-order space harmonic. (The 1rregular1ty
of the curve is due in part to the somewhat rough dif-
ferentiation of the dispersion curve which was employed
in determining the group velocity v,.) This rather simple
example is presented to illustrate the potential of the
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Fig. 9. Interaction impedance Zy; for the zero-order space har-
mohic m = 0at the center of the substrate surface (z,y) = (0,H,).

present formulation in applications such as CFA develop-
-ment where accurate determination of the RF fields must
be made in a relatively complicated inhomogeneous
transmission line cross section. '

VI. CONCLUSION

Computations carrying out the analysis presented
earlier have been performed on the CP/CMS Time-
Sharing System at MIT Lincoln Laboratory. In a first
program, the Fourier-series forinulation of the Green’s
function (13) is evaluated at the substrate surface y = Hy,
and the system (15) is solved for the charge distribution.
The output of this program is a table giving the even- and
odd-mode velocities and characteristic impedances as
functions of the iterative phase parameter . A second
program uses these data as input to find, for each table
entry, the corresponding frequency satisfying the charac-
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teristic equation (23). With this solution, constituting
the dispersion law of the meander line, the fields, and all
other parameters of the structure, are completely de-
termined.: '

It is evident that this framework is not limited to the
present example of the meander line, but is suitable for
the analysis of a wide range of complex periodic trans-
mission line structures in the quasi-TEM regime. Beyond
the immediate objective, namely, to obtain realistic data
for comparison and design guidance on a class of slow-
wave structures for crossed-field amplifier development,
the formulation illustrates how a technique for systematic
accounting of the complex fields in a periodic medium can
be carried out by a combination of logical, analytical, and
computational methods.
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